
J. Fluid Mech. (1995), vol. 282, pp.  219-232 
Copyright 0 1995 Cambridge University Press 

219 

Analytical prediction of regular reflection over rigid 
porous surfaces in pseudo-steady flows 

By H. LI, A. LEVY AND G. BEN-DOR 
Pearlstone Center for Aeronautical Engineering Studies, Department of Mechanical Engineering, 

Ben-Gurion University of the Negev, Beer Sheva, Israel 

(Received 17 January 1994) 

An analytical model for solving the flow field associated with regular reflections of 
straight shock waves over porous layers has been developed. The governing equations 
of the gas inside the porous material were obtained by simplifying the general 
macroscopic balance equations which were obtained by an averaging process over a 
representative elementary volume of the microscopic balance equations as originally 
done by Bear & Bachmat (1990). The analytical predictions of the proposed model 
were compared to experimental results of Skews (1992) and Kobayashi, Adachi & 
Suzuki (1993). Very good to excellent agreement was evident. 

1. Introduction 
The reflection phenomena of shock waves over different geometries and the 

interaction phenomena of shock or compaction waves with porous media have 
received much attention in the past two decades owing to their application to many 
engineering fields. While the former subject has reached a state where, from an 
engineering point of view, it is quite well understood and as such has been summarized 
in a few reviews: Bazhenova, Gvozdeva & Nettleton (1984), Hornung (1986) and Ben- 
Dor (1988) and in a book, Ben-Dor (1991), the latter (interaction phenomena) are still 
under intensive investigation by many researchers since they are still far from being 
understood. 

The porous media with which the shock waves interact can, in general, be divided 
into flexible and rigid materials. A comprehensive study concerning the propagation of 
planar shock/compaction waves in rigid porous media was initiated a few years ago in 
the Department of Mechanical Engineering of the Ben-Gurion University of the 
Negev, Israel. The theoretical approach of this study is summarized in Bear et al. 
(1992), Sorek et al. (1992) and Levy et al. (1995b). 

The detailed theoretical model which is described by Levy et al. (1995b) was 
simplified by Krilov et al. (1995) for the case of an isothermal porous material and by 
Sorek et al. (1995) for the more general non-isothermal case. The latter model was 
recently solved analytically by Levy et al. (1995~). The predictions of their analytical 
model regarding the gaseous phase properties were compared to experimental results 
which were obtained in Skews’ laboratory. Excellent agreement was evident. 

In a different study Levy et al. (1993 b) developed another simplified model by which 
the solid phase properties behind strong compaction waves could be predicted. The 
analytical predictions were compared with the experimental results of Sandusky & 
Liddiard (1985) and good to very good agreement was obtained. 

Based on the fact that the predictions of our simplified analytical models agreed very 
well with experimental results regarding the properties of both the gaseous and solid 
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FIGURE 1 .  Schematic illustration of the two physical models proposed by Kobayashi et al. (1993): (a) 
the simple sink model, and (b)  the realistic model. i ,  r and t are the incident, reflected and transmitted 
shock waves, respectively, s is a slipstream, C is the interface between the porous material and the 
gaseous phase, $t and Oi are angles of incidence and deflection, wi and w, are the incident and the 
reflected shock wave angles. (0) to (4) are uniform flow states. 

phases behind the shock waves, and our past experience in investigating the shock wave 
reflection phenomena, we felt confident enough to combine the foregoing mentioned 
two phenomena and to investigate the regular reflection of oblique shock waves over 
porous surfaces. 

Another motivation for the present study was a paper which was presented recently 
by Kobayashi, Adachi & Suzuki (1995) at the 19th International Symposium on 
Shock Waves held in Marseille, France. In that paper, to be discussed in detail 
subsequently, they proposed two different analytical models for describing the 
phenomenon. They then presented and solved an analytical model for only the simpler 
case, where the coupling between the pure gas phase and the porous phase is ignored. 
Unfortunately, however, this is the less realistic model. As a consequence, we decided 
to try to solve their second model, the more realistic one, and compare it both with 
their experimental results, and with those from other experimental investigations. 
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2. The physical models 
The two physical models proposed by Kobayashi et al. (1995) are shown 

schematically in figures 1 (a)  and 1 (b). The first, shown in figure 1 (a),  was termed by 
them the simple sink model. The incoming flow [state ( O ) ]  parallel to the surface of the 
porous layer is deflected clockwise by an angle 8, as it passes across the incident shock 
wave, i. Then, as it passes across the reflected shock wave, r ,  it is deflected 
counterclockwise by an angle 8,. Since the flow in state (2) can penetrate into the 
porous layer, the boundary condition there is 

8, - 8, = 6, 

where 6 is the overall deflection angle induced by the ‘sink’ effect which is introduced 
by the porous layer. In the case of a reflection over a non-porous solid surface S = 0. 
A similar model was proposed by Onodera & Takayama (1990) who investigated the 
propagation of planar shock waves over slitted surfaces. 

In summary, Kobayashi et al.’s (1995) first physical model accounts only for the flow 
of the gas behind the reflected shock wave into the porous surface and completely 
ignores the fact that a shock wave should be transmitted into the porous layer as shown 
schematically in figure l(b), in which their second physical model is shown. This 
physical model was correctly called by them the realistic model. Following the 
schematic presentation of their realistic model, Kobayashi et al. (1995) claimed that 
‘realistic as it is, it is not easy to solve the whole flow field [associated with this model] 
since one must deal with the coupled problem between the pure gas phase and the 
porous phase’. 

Their solution of their first physical model was only empirical as they were not able 
to analytically relate the overall deflection angle, 6, to the initial conditions, namely the 
incident flow Mach number, M,, the angle of incidence of the incident shock wave, 
and the porous layer properties. Instead, for each experiment they fitted an appropriate 
value of 6 by which the angle between the incident and reflected shock waves, mi,., as 
obtained by solving the well-known two-shock theory with the boundary condition 
given by equation (1) agreed with that obtained experimentally. In the following we 
present an analytical solution of Kobayashi et al.’s (1995) realistic model which deals 
with the coupled problem between the pure gaseous phase and the porous phase. 

3. The present analytical model 
As mentioned in the foregoing discussion, the aim of the present study is to 

formulate the governing equations of the physical model shown in figure 1 (b), which 
is most likely the correct model for describing the regular reflection of an oblique shock 
wave over a rigid porous surface. While the manner of describing the gaseous phase 
flow through the various shock waves outside the porous layer in states (0), (1) and (2) 
is relatively simple and well known, the manner of treating the flow inside the porous 
material is much more complicated and far less known. 

The macroscopic mass, linear momentum and energy balance equations, for a two- 
phase saturated porous medium as obtained by the dimensional analysis which Levy 
et al. (1995b) conducted on the macroscopic balance equations of Bear & Sorek (1990) 
and Sorek et al. (1992), were adopted for the present study. The macroscopic 
conservation equations were obtained by an averaging process over a representative 
elementary volume (REV) of the microscopic balance equations which were originally 
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presented by Bear & Bachmat (1990). In addition, the porous material was assumed to 
be rigid and the gaseous phase to be an inviscid, non-conductive perfect gas. 

Similar to the modelling of the head-on reflection of a planar shock wave from the 
shock-tube endwall where both the momentum and energy exchanges between the 
gaseous phase and the rigid endwall are neglected, it is assumed in the present study 
that the gaseous phase does not exchange momentum and energy with the rigid 
skeleton of the porous medium as it flows through the pores. Although this assumption 
cannot be justified at present, it is expected that it will be validated when the 
predictions of the presently developed analytical model will be compared with available 
experimental results. Note that the use of this assumption is limited to the porous 
region near the interface only. Careful and refined measurements such as those of 
Adachi, Kobayashi & Suzuki (1992), Kobayashi et al. (1995) and Skews (1994) are 
needed to resolve the issue of how important momentum and energy exchanges are. It 
should be expected that as the gas propagates deeper into the porous material the 
momentum and energy exchanges between the gas and the pores become significant. 
This was shown experimentally by Levy et al. (1993a) where the shock wave 
transmitted into the porous material became more and more dispersed as it propagated 
further and further into the porous material. It should also be noted that this 
assumption cannot be applied to flexible porous materials even in the region near the 
interface. This was clearly shown by Olim et al. (1994). 

In addition to the assumption mentioned above, we adopted the classical 
assumptions of the well-known two-shock theory (see Ben-Dor 1991) that the flow field 
is pseudo-steady and all the discontinuities are straight. The last assumption implies 
that all the flow regions bounded by the straight discontinuities are uniform in all their 
dynamic and thermodynamic properties. 

The justification of these assumptions lies in the recently obtained experimental 
results of Skews (1994) where measurements of the triple point trajectory indicated that 
it is ‘a straight line within the accuracy of the measurement’. Skews (1994) noted that 
his findings were in contrast to the evidence of a curved trajectory for rough and 
guttered wedges as was shown by Reichenbach (1985) and Adachi et al. (1992). Note 
that Onodera & Takayama (1990) who investigated a problem similar to that of 
Adachi et al. (1992) but with a larger ratio of slit width to depth also found that the 
triple point trajectory was straight. Consequently, if Mach reflection is self-similar, it 
is expected that the regular reflection, which is simpler, will also be self-similar. (Note 
that a regular reflection can be considered as a Mach reflection with x+O where x is 
the triple point trajectory angle.) In addition Skews (1994) noted that in his 
experiments a number of broad waves were evident in the external flow when the 
incident shock wave reflected as a Mach reflection. When the reflection was regular (as 
is the case investigated in the present study) ‘the larger scale wave structures were no 
longer apparent’ and the flow behind the reflected shock wave near the reflection point, 
where our model is applied, approached uniform conditions. 

In summary, from a modelling viewpoint it is common practice to treat a rigid 
porous material as a homogeneous medium with properties uniformly distributed. For 
such a viewpoint it could be expected that the flow would be pseudo-steady from a 
macro viewpoint, i.e. it would expand uniformly. 

As shown in the Appendix, the properties of the gaseous phase which flows inside 
the porous layer can be redefined (transformed) to obtain properties which result in 
governing equations similar to those of a pure gas. Using this novel approach to overall 
treatment of the phenomena turns out to be much more convenient than the treatment 
of the original equations. 
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4. The governing equations 
Let us consider the wave configuration shown in figure 1 (b). The wave configuration 

consists of three shock waves: the incident shock wave, i, the reflected shock wave, r ,  
and the transmitted shock wave, t ;  and a contact discontinuity, s, which separates the 
flow which has been shocked by a single shock wave, the transmitted shock wave and 
the flow shocked by both the incident and reflected shock waves. 

State (0) is ahead of the incident and transmitted shock waves; state (1) is behind the 
incident shock wave; state (2) is behind the reflected shock wave, and state (4) is behind 
the transmitted shock wave. State (3) is obtained from state (2) when the flow 
penetrates the porous material. States (3) and (4) are separated by the contact 
discontinuity. 

Applying the conservation equations of mass, normal momentum, tangential 
momentum and energy across the oblique shock waves which comprise the wave 
configuration shown in figure 1 (b) results in: 

across the incident shock wave i 

po uo sin 4, = p1 u1 sin - 41, (2) 

(3) p o  + po ui sin2 $3 = p1 + p1 u: sin2 ($1 - 01), 

Po tan $1 = P 1 tan ($1 - 01>, 

ha +iui sin2 $1 = h, +$u; sin2 ($1 - d1); 

across the reflected shock wave r 

P1 tan $2 = Pz tan ($2 - @2>, 

h, + iu; sin2 $2 = h, + iu; sin2 ($2 - 0,) ; 

across the transmitted shock wave t 

p$ uo sin $4 = p: u, sin ($, - 04), 

p$ + p$ ut sin2 q54 = p: + p: ui sin2 ($, - O,), 

Po* tan $4 = P,* tan ($4 - 041, 

h$ + iu; sin2 q5, = h: + iui sin2 (q5, - 0,). 

(10) 

(1 1) 

(12) 

(13) 

(The superscript * denotes that the gaseous phase properties inside the porous layer are 
redefined as shown in the Appendix.) 

In addition to the above equations across the various oblique shock waves, the 
governing equations across the interface, C (which separates the flow inside and 
outside the porous layer), should be added. Based on Skews (1992) who reported that 
the wave configurations over porous surfaces were similar to those obtained over 
slitted surfaces, we assume that the porous surface (near the interface) can be treated 
as a slitted surface. Thus the governing equations across the interface, C, are: 

conservation of mass 

P2 u.2 sin $3 = VP,* u3 sin ($3 + 031, (14) 
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conservation of normal momentum 
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conservation of tangential momentum 

u2 cos $3 = us cos (543 + d3) ,  
conservation of energy 

(17) Y h, +iui sin2 $3 = - h* +:u: sin2 ($3 + O,),  
Y* 

from geometry 
$, = 8,-8,. 

Since the pressures across the contact discontinuity are equal, one can simply write 

(19) * P,* =p4. 

In addition, if the contact discontinuity, s, is assumed to be infinitely thin, i.e. a 
slipstream, then 

(20) 

In the above equations hi, the enthalpy, can be expressed as 

8, - 8, + 8, = 8,. 

Similarly 

The gaseous phase porosity is v. All the other parameters are defined in the Appendix. 
In summary, the above set of governing equations consists of 19 algebraic equations 

with 25 unknowns, namely po, p,*, pl ,  p,, p j ,  p4*, p0 ,  P,*, P,, p 2 ,  P, p4 uo, ul, u,, u3, u4, 
$,, $27 $3, $,, 8,, 8,, 8,, and 04. Thus, in order to have a solvable set, 6 of the above 
25 unknowns should be supplied as initial conditions. The six which are usually the 
known initial conditions are po, p,*, p o ,  p,*, uo and $,. 

Note that the physical properties of both the gaseous and the solid phases, i.e. the 
specific heat capacities ratio y, the specific gas constant R, the porosity v and the 
tortuosity 7 are assumed known. 

* *  

Numerical solution 

The set of the 19 algebraic governing equations was solved numerically by the 
subroutine DNEQNJ of the IMSL library. This subroutine is designed to solve nonlinear 
algebraic equations provided the Jacobian is given. The Jacobian was symbolically 
calculated separately using MATHEMATICA. Since solutions of this kind are extremely 
fast, no details regarding CPU time are provided here. 

5. Results and discussion 
In the following, comparisons between predictions of the presently proposed 

analytical model with the experimental results of Skews (1992) and Kobayashi et al. 
(1995) are given. 
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FIGURE 2. The reflected shock wave angle, or, as a function of the incident shock wave Mach number, 
Mi, for two different reflecting wedge angles, 40" and 50". The experimental results are taken from 
Skews (1992). The dashed lines are for plane solid reflecting surfaces taken from Smith (1945). The 
solid lines are the analytical prediction based on the physical model shown in figure 1 (b). 

Skews (1992) experimentally investigated the oblique reflection of shock waves from 
porous materials. The porous material in his case was silicone carbide (Sic) matrix 
with a mean pore size of about 2.5 mm [lo pores per inch (p.p.i.)]. Based on water 
displacement measurements Skews (1992) estimated the porosity to be 0.8. Levy et al. 
(1993 a), who used the same material in a different experimental study, calculated the 
porosity from the approximated expression 

where pe is the porous material density and ps is the density of the solid material of 
which the skeleton is made. (p, was obtained by dividing the mass of a given model by 
its volume and ps was provided by the manufacturer.) The porosity value as obtained 
and reported by Levy et al. (1993a) was 0.728f0.016. 

Kobayashi et al. (1995) conducted experiments with a rubber foam having a porosity 
0.98 and a dusty layer whose porosity was reported to be 0.44. Both Skews (1992) and 
Kobayashi et al. (1995) measured the angle, w,, between the reflected shock wave, r ,  
and the reflecting porous surface. The values of the reflection angle, or, as a function 
of the incident shock wave Mach number, Mi, for two different wedge angles, Ow = 40" 
and 50" as measured and reported by Skews (1992), are shown in figure 2 as squares 
and circles, respectively. The dashed lines describe the dependence between w, and Mi 
as calculated using the two-shock theory for a plane solid reflecting surface. The solid 
lines were calculated using our proposed analytical model for the two different porosity 
values mentioned above, i.e. Q, = 0.8 which was reported by Skews (1992) and = 0.73 
which was reported by Levy et al. (1993 a). It is evident from figure 2 that our proposed 
analytical model is capable of reproducing the experimental results very well. Better 
agreement is obtained with the lower porosity Q, = 0.73 which was measured and 
reported by Levy et al. (1993a). Up to Mi x 1.4 the agreements with both wedges is 
excellent. It is also evident from figure 2 that for Mi > 1.4 much better agreement is 
obtained with the larger wedge (8, = 50") experiments. The reason for the discrepancy 
between the experimental results and the analytical prediction for 8, = 40" and 
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FIGURE 3. The reflected shock wave angle, w,, as a function of the incident shock wave angle, q, for 
two different incident shock wave Mach numbers (a) Mi = 1.20, (b)  1.41. The experimental results are 
taken from Kobayashi et al. (1995). 0, cp = 0 (plane solid surface); A, cp = 0.44; 0, p = 0.98. 
Dashed line cp = 0; dashed-dotted line cp = 1 ; solid lines pl = 0.44 and p = 0.98 as calculated using 
the physical model shown in figure 1 (b). 

Mi > 1.4 is not known. The discrepancy may arise from one or more of the simplifying 
assumptions which may have larger effect at smaller wedge angles. (Note that as the 
wedge angle decreases and the Mach reflection is approached, the disturbances behind 
the reflected shock wave are much more marked (see Skews 1994).) However, in view 
of the lack of experimental results for other wedge angles, it was not possible to 
pinpoint the exact reason for the discrepancy. 

Note that unlike the monotonic decrease of the reflection angle, q., with the incident 
shock wave Mach number, Mi, as obtained experimentally for 8, = 50" for the case 
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when 8, = 40°, w, first decreases and then increases. The reason for this behaviour is 
not clear. The analytical prediction for both these wedge angles resembles a continuous 
decrease in w, as Mi increases. 

It should be mentioned here that in order to obtain the above-described analytical 
prediction, the tortuosity, 7, of the investigated porous material had to be determined. 
This was done with the aid of equation (A 6b) which appears in the Appendix and the 
experimental results reported by Levy et al. (1993a) from which the speed of sound of 
the gas inside the porous layer a* could be estimated in the following way. Equation 
(A 6b)  can be rearranged to read 

72+- y-  1 I 7 - q q 2  = 0. 
y-1 a 

Thus, once the value of a* is known, 7 could be simply calculated from equation (23). 
(Note that (23) yields only one positive root.) The tortuosity as calculated by us using 
the above outlined procedure and Levy et al.’s (1993~) experiments was 7 = 0.7. 

Kobayashi et al. (1995) presented their experimentally measured values of the 
reflection angle, w,, as a function of the incident angle, wi, for two different incident 
shock wave Mach numbers, Mi = 1.2 and 1.41. Their results are reproduced in figures 
3(a) and 3(b), respectively. The dashed line in each of these figures describes the 
relation between w, and wi as obtained from the two-shock theory for reflection over 
solid plane walls. Note that such a wall could be regarded as a porous material for 
which p, = 0. The dashed-dotted line in each of these figures describes the other limiting 
case of p, = 1. Details regarding this case can be found in Kobayashi et al. (1995). 

Naturally, results over any actual porous material for which 0 < p, < 1 should lie in 
between these two limiting lines as is so in the cases shown in figures 3 (a)  and 3 (b). The 
experimental results marked by open circles were obtained over a solid reflected surface 
(p, = 0); the triangles were obtained over a dusty layer having a porosity p, = 0.44 and 
the squares were obtained for a rubber foam having a porosity p, = 0.98. The 
predictions of our proposed analytical model for p, = 0.44 and 0.98 are shown in figures 
3(a) and 3(b) by solid lines. Excellent agreement is evident with both porosities and 
both incident shock wave Mach numbers. 

It should again be noted that in order to calculate the analytical results shown in 
figure 3, the tortuosities of both materials (rubber foam and dust layer) were required. 
Unlike the porous material made of silicon carbide which was used by Skews (1992), 
where enough experimental data were available to estimate the tortuosity, we did not 
have a way of getting a good estimate for the tortuosity of the materials used in the 
experiments of Kobayashi et al. Consequently, based on the fact that the tortuosity was 
found to be slightly smaller than its porosity in the case of a silicon carbide (0.7 as 
compared with 0.73), the tortuosity of the dust layer was set at 0.4 (its porosity was 
0.44) and that of the rubber foam was set at 0.9 (its porosity was 0.98). 

It should be noted here that due to this way of choosing the tortuosity values, the 
sensitivity of the analytical results for the reflection angel, w,, with respect to the 
tortuosity was checked. The calculations for 7 = 0.4 and 0.5 resulted in 

~o,(T = 0.5) - W,(T = 0.4)1 < 0.01. 
W,(T = 0.4) 

Thus it is clear from this sensitivity check that the predicted values of the reflected 
wave angle, w,, do not depend strongly on the tortuosity, 7, and that our analysis is 
valid. 
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FIGURE 4. The dependence of the pressure reduction factor, ~ ( v )  = p2(p)/p2 (p = 0), on the porosity of 
the reflecting surface, for Ow = 50” and comparison with experimental results. 0,  A, Skews (1992); 
0, A, Kobayashi et al. (1995). 

Owing to the fact that the porous layer over which the shock wave reflects acts as 
a sink, the pressure in state (2) behind the reflected shock wave is smaller than that 
obtained when the reflection is over solid surfaces. Consequently, let us define a 
pressure reduction factor 7 where 

The dependence of the pressure reduction factor on the reflecting surface porosity for 
a reflecting wedge angle Ow = 50°, is shown in figure 4. 

The experimental results of Skews (1992) and Kobayashi et al. (1995) for two 
incident shock wave Mach numbers, Mi M 1.2 and M 1.4 are added to figure 4. (Note 
that Skews’ experiments were conducted with Mi = 1.19 and 1.4 and Kobayashi et al.’s 
with 1.2 and 1.41.) The results for Mi M 1.2 are marked by circles and those for 
Mi M 1.4 by triangles. The experimental results of Skews are marked with solid symbols 
and those of Kobayashi et al. with open symbols. Note that the value of p2(rp) was not 
presented explicitly by either Skews (1992) or Kobayashi et al. (1995). However, based 
on their reported data of the reflection angle, w,, the value of p2(rp) was simply inferred 
by us using oblique shock wave relations across the incident and reflected shock waves. 

The predictions of our proposed analytical model for Mi = 1.2 and 1.41 are also 
shown in figure 4 (solid lines). Very good agreement between the analytical predictions 
and the experimental results is evident in figure 4 for the porous material with the three 
different porosities (rp = 0.44, 0.73 and 0.98). Note that the agreement seems to be 
better for the higher porosities. 

The transition from regular to Mach reflection 

The reflecting wedge angle at which the reflection undergoes a transition from regular 
to Mach reflection, O;, as a function of the incident shock wave Mach number, Mi, or 
the inverse pressure ratio, ( = p l / p o ,  is shown in figure 5. Note that the wedge angle, 
Ow, complements the incident wave angle, wi,  i.e. wi + Ow = n/2. 
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FIGURE 5. The dependence of the regular 0 Mach reflection transition on the porosity of the reflecting 
surface and comparison with the experimental results of Smith (1945) for p = 0 (a), Kobayashi 
et al. (1995) for p = 0.44 (O),  and Skews (1992) for p = 0.73 (A). The curves are calculated using 
the physical model shown in figure 1 (b). 

Note also, that since the gas behind the reflected shock wave is allowed to penetrate 
into the porous material, the detachment criterion is meaningless for the present case. 
Instead, the sonic criterion was applied. It should be mentioned here that for reflection 
over solid surfaces the sonic and detachment criterion are practically the same. Based 
on the fact that the disturbances propagate faster above the interface than under it, i.e. 
in the pure gas as opposed to in the gas inside the porous material, the sonic criterion 
for the present case is expressed as 

u, cos & = a, 

rather than u, = a, which is the sonic criterion over solid non-porous surfaces. 
The two limiting lines for p, = 0 (solid reflecting surface) and p, = 1 which were 

mentioned earlier when figure 3 was presented and discussed are shown in figure 5 by 
dashed and dashed-dotted lines, respectively. Using simple gasdynamic considerations 
(or sound theory) it could be shown that the line p, = 1 is given by 

(Mf - 1) [(y- 1) M ;  + 21 
0: = arctan 

The results of Smith (1945) for q~ = 0, Kobayashi et al. (1995) for p, = 0.44 and 
Skews (1992) for 9, = 0.73 are added to figure 5, together with the analytical predictions 
of the proposed analytical model which are shown by solid lines. 

Note that while in the experiments of Kobayashi et al. (1995) the transition wedge 
angle, 0:, was measured and reported, in Skews’ (1992) results the values of 0: were 
not directly reported. They were deduced by us by extrapolating his experimental data 
for the triple point trajectory angle, x, to x = 0. 

The agreement between the analytical predictions and the experimental results is 
seen to be good. It is somewhat better for the lower incident shock wave Mach number, 
i.e. Mi z 1.2, than for Mi z 1.4. 
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6. Conclusions 
An analytical model for describing regular reflection over porous surfaces has 

been developed. The very good to excellent agreement which was evident when the 
analytical predictions of the proposed model were compared with the experimental 
results of Skews (1992) and Kobayashi et al. (1995) validates the various assumptions 
used by us in the course of developing the analytical model and confirms the validity 
of the entire physical model. In a future study, concepts similar to those adopted in the 
present study will be used to develop an analytical model for describing Mach 
reflections over porous surfaces. 

Appendix. The properties of the gaseous phase inside the porous medium 
and its conservation equations 

gaseous phase which flows through the pores of the porous medium are 
Based on Bear & Bachmat (1990) the one-dimensional conservation equations of the 

au au 
at ax 3 

-+A-=O 

where U, the dependent variables vector, is 

In the above equations u is the gaseous phase velocity, p is its density, p is its pressure, 
y is its specific heat capacities ratio and 7 is its tortuosity. The tortuosity is a geometric 
parameter which for gases is, in general, smaller than unity. 

An inspection of the coefficients matrix given by (A 1 c) indicates that by redefining 
the thermodynamic properties of the gaseous phase, both the variables vector and the 
coefficients matrix can be transformed to obtain the forms appropriate to a pure gas, 
i.e. 

(A 1 4  

and 

A * = [ .  2.l P* u i]. 
0 Y*P* 

The advantage of having the forms given by (A 1 d )  and (A 1 e) over those given by 
(A 1 b) and (A 1 c) is that the former have analytical solutions which can readily be 
adapted for the present case. The above-mentioned redefinition is given in the 
following. 



23 1 

at ax ax 

au  au  1 ap* 
-+u-+-- = 0, 
at ax p* ax 

1 ap* au ap* 
-- +y*-+-- = 0. 

Regular reflection over porous surfaces 

Let us redefine the gaseous phase thermodynamic properties as follows: 

p* = p, p* = TP, T* = T, y* = 1 +(y- l ) ~ ,  R* = TR, 

e* = -- 1 P * _  - ~- l P = e ,  A*=-- = -h. Y* P* Y* 
y* - 1 p* y -  1 p Y*- lP* Y 

Based on the above redefined gaseous phase properties one can further show that 

(A 3) 
ah* y*ah y* 

‘P * - -  - OT*/,* = y@’lp = 7 ‘P 
(recall that T is a constant). Combining the above two expressions results in 

Substituting the redefined properties into the conservation equations (A 1 a)  yields 

The eigenvalues of these equations are 

u and u f ( y * ~ * / p * ) ~ ’ ~ .  

Consequently, the disturbance propagation speed, a*, is clearly 

a* = ( y * ~ * / p * ) l ’ ~ .  

Note that with the aid of the definitions given by (A 2) we have 

Since a* can be considered as the local speed of sound of the gaseous phase inside the 
porous medium, the gas Mach number inside the porous medium can be defined as 

M * = u/a*. (A 7) 

Rewriting the governing equations for a steady flow yields 

Applying these equations across the normal shock wave implies that 

pTul =p;uZ,  pT+pTuq = p ; + p ; ~ i ,  hT+$f = h,*++i. (A 9) 
Recall that the set of equations given by (A 9) was developed for the gaseous phase 
inside the porous material following a redefinition of its thermodynamic properties. 
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Since the equations have identical form to those obtained across a normal shock wave 
in a pure gas, it is clear that their solution should also be identical, i.e. one can readily 
apply the well-known Rankine-Hugoniot relations across the shock wave inside the 
porous medium provided that the gas real thermodynamic properties are replaced by 
the above-defined *-properties. 
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